中国稻米 ›› 2025, Vol. 31 ›› Issue (4): 19-25.DOI: 10.3969/j.issn.1006-8082.2025.04.005
涂洲溢1,2,#(), 刘士毓1,2,#(
), 符辰建1,2, 谢志梅1,2, 胡小淳1,2, 秦鹏1,2, 孙振彪1,2, 江南1,2,*(
), 杨远柱1,2,*(
)
收稿日期:
2025-05-30
出版日期:
2025-07-20
发布日期:
2025-07-08
通讯作者:
* jiangnan1984731@126.com;yzhuyah@163.com作者简介:
#共同第一作者:tuzhouyi@qq.com;liushiyu@lpht.com.cn
TU Zhouyi1,2,#(), LIU Shiyu1,2,#(
), FU Chenjian1,2, XIE Zhimei1,2, HU Xiaochun1,2, QIN Peng1,2, SUN Zhenbiao1,2, JIANG Nan1,2,*(
), YANG Yuanzhu1,2,*(
)
Received:
2025-05-30
Published:
2025-07-20
Online:
2025-07-08
Contact:
* jiangnan1984731@126.com;yzhuyah@163.comAbout author:
#Co-first author: tuzhouyi@qq.com; liushiyu@lpht.com.cn
摘要:
近20年来,全球科学家在水稻与病虫互作领域不断研究探索,取得了诸多重要成果,不仅深入剖析了寄主抗性遗传与分子机制,还为水稻抗病虫分子育种提供了关键基因资源、策略与技术支撑,对水稻绿色安全生产具有重要的理论和实践意义。本文综述了水稻“两病一虫”抗性基因克隆与分子机制的研究进展,介绍了隆平高科在杂交水稻抗病虫分子育种方面的实践与成果,分析了当前水稻抗病虫分子育种面临的挑战,并对其未来发展趋势进行了展望。
中图分类号:
涂洲溢, 刘士毓, 符辰建, 谢志梅, 胡小淳, 秦鹏, 孙振彪, 江南, 杨远柱. 水稻抗病虫分子育种:现状、挑战与展望[J]. 中国稻米, 2025, 31(4): 19-25.
TU Zhouyi, LIU Shiyu, FU Chenjian, XIE Zhimei, HU Xiaochun, QIN Peng, SUN Zhenbiao, JIANG Nan, YANG Yuanzhu. Molecular Breeding for Pests and Diseases Resistance in Rice: Current Status, Challenges and Prospects[J]. China Rice, 2025, 31(4): 19-25.
[1] | SAVARYL S, WILLOCQUET L, PETHYBRIDGE S J, et al. The global burden of pathogens and pests on major food crops[J]. Nature Ecology & Evolution, 2019, 3(3): 430-439. |
[2] | 卓富彦, 陈学新, 夏玉先, 等. 2013—2022年我国水稻病虫害发生特点与绿色防控技术集成[J]. 中国生物防治学报, 2024, 40(5): 1 207-1 213. |
[3] | DEAN R, VAN KAN J A L, PRETORIUS Z A, et al. The top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology, 2012, 13(7): 414-430. |
[4] | 宋应星. 天工开物译注(精)[M]. 上海: 上海古籍出版社, 2008. |
[5] | YAMADA M. Pathogenic specialization of rice blast fungus in Japan[J]. Jarq-japan Agricultural Research Quarterly, 1985, 19: 178-183. |
[6] | 鄂志国, 张丽靖, 焦桂爱, 等. 稻瘟病抗性基因的鉴定及利用进展[J]. 中国水稻科学, 2008, 22(5): 533-540. |
[7] | LIU X, HU X C, TU Z Y, et al. The roles of Magnaporthe oryzae avirulence effectors involved in blast resistance/susceptibility[J]. Frontiers in Plant Science, 2024, 15: 1 478 159. |
[8] | MACKILL D J. Inheritance of blast resistance in near-isogenic lines of rice[J]. Phytopathology, 1992, 82(7): 746-749. |
[9] | AMANTE-BORDEOS A, SITCH L A, NELSON R, et al. Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice, Oryza sativa[J]. Theoretical & Applied Genetics, 1992, 84(3-4): 345-354. |
[10] | DENG Y W, ZHU X D, SHEN Y, et al. Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2and Pi9 in a broad-spectrum resistant Chinese variety[J]. Theoretical & Applied Genetics, 2006, 113(4): 705-713. |
[11] | 杨好, 黄衍焱, 易春霖, 等. 水稻Pi9位点6个稻瘟病抗性基因特异分子标记的开发及应用[J]. 中国农业科学, 2023, 56(21): 4 219-4 233. |
[12] | DENG Y W, ZHAI K R, XIE Z, et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance[J]. Science, 2017, 355(6 328): 962-965. |
[13] | ZHAI K R, DENG Y W, LIANG D, et al. RRM transcription factors interact with NLRs and regulate broad-spectrum blast resistance in rice[J]. Molecular Cell, 2019, 74(5): 996-1 009. |
[14] | ZHAI K R, LIANG D, LI H L, et al. NLRs guard metabolism to coordinate pattern- and effector-triggered immunity[J]. Nature, 2022, 601(7892): 245-251. |
[15] | LIANG D, YANG D Y, LI T, et al. A PRA-Rab trafficking machinery modulates NLR immune receptor plasma membrane microdomain anchoring and blast resistance in rice[J]. Science Bulletin, 2025, 70(5): 733-747. |
[16] | ORBACH M J, FARRALL L, SWEIGARD J A, et al. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta[J]. The Plant Cell, 2000, 12(11): 2 019-2 032. |
[17] | BRYAN G T, WU K S, FARRALL L, et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta[J]. The Plant Cell, 2000(12): 2 033-2 045. |
[18] | JIA Y L, MCADAMS S A, BRYAN G T, et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance[J]. The EMBO Journal, 2000, 19(15): 4 004-4 014. |
[19] | ZHAO H J, WANG X Y, JIA Y L, et al. The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance[J]. Nature Communications, 2018, 9(1): 2 039. |
[20] | MENG X L, XIAO G, TELEBANCO-YANORIA M J, et al. The broad-spectrum rice blast resistance (R) gene Pita2 encodes a novel R protein unique from Pita[J]. Rice, 2020, 13(1): 19. |
[21] | XIAO G, LAKSANAVILAT N, CESARI S, et al. The unconventional resistance protein PTR recognizes the Magnaporthe oryzae effector AVR-Pita in an allele-specific manner[J]. Nature plants, 2024, 10(6): 994-1 004. |
[22] | GREENWOOD J R, LACORTE-APOSTOL V, KROJ T, et al. Genome-wide association analysis uncovers rice blast resistance alleles of Ptr and Pia[J]. Communications Biology, 2024, 7(1): 607. |
[23] | CHEN X W, LIU X, HU X C, et al. The geographic distribution and natural variation of the rice blast fungus avirulence gene AVR-Pita1 in Southern China[J]. Plants, 2025, 14(8): 1 210. |
[24] | JIANG N, YAN J, LIANG Y, et al. Resistance genes and their Interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.) —An updated review[J]. Rice, 2020, 13(1): 3. |
[25] | LU Y D, ZHONG Q F, XIAO S Q, et al. A new NLR disease resistance gene Xa47 confers durable and broad-spectrum resistance to bacterial blight in rice[J]. Frontiers in Plant Science, 2022, 13(1): 1 037 901. |
[26] | SONG W Y, WANG G L, CHEN L L, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21[J]. Science, 1995, 270(5243): 1 804-1 806. |
[27] | CENTURY K S, LAGMAN R A, ADKISSON M, et al. Developmental control of Xa21-mediated disease resistance in rice[J]. The Plant Journal, 2003, 20(2): 231-236. |
[28] | WANG G L, SONG W Y, RUAN D L, et al. The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants[J]. Molecular Plant-Microbe Interactions, 1996, 9(9): 850-855. |
[29] | PARK C J, LEE S W, CHERN M, et al. Ectopic expression of rice Xa21 overcomes developmentally controlled resistance to Xanthomonas oryzae pv. oryzae[J]. Plant Science, 2010, 179(5): 466-471. |
[30] | CHEN X W, CHERN M S, CANLAS P E, et al. An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(17): 8 029-8 034. |
[31] | PARK C J, PENG Y, CHEN X W, et al. Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity[J]. PLoS Biology, 2008, 6(11): 2 614-2 614. |
[32] | PRUITT R N, SCHWESSINGER B, JOE A, et al. The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a gram-negative bacterium[J]. Science Advances, 2015, 1(6): e1500245. |
[33] | LUU D D, JOE A, CHEN Y, et al. Biosynthesis and secretion of the microbial sulfated peptide RaxX and binding to the rice XA21 immune receptor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(17): 8 525-8 534. |
[34] | JIANG G H, XIA Z H, ZHOU Y L, et al. Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5 (Xa5) in comparison with its homolog TFIIAγ1[J]. Molecular Genetics and Genomics, 2006, 275(4): 354-366. |
[35] | HOIBY T, ZHOU H Q, MITSIOU D J, et al. A facelift for the general transcription factor TFIIA[J]. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 2007, 1769(7-8): 429-436. |
[36] | MA W X, ZOU L F, JI Z Y, et al. Xanthomonas oryzae pv. oryzae TALE proteins recruit OsTFIIAγ1 to compensate for the absence of OsTFIIAγ5 in bacterial blight in rice[J]. Molecular Plant Pathology, 2018, 19(10): 2 248-2 262. |
[37] | GU K Y, TIAN D S, QIU C X, et al. Transcription activator‐like type III effector AvrXa27 depends on OsTFIIAγ5 for the activation of Xa27 transcription in rice that triggers disease resistance to Xanthomonas oryzae pv. oryzae[J]. Molecular Plant Pathology, 2009, 10(6): 829-835. |
[38] | YUAN M, KE Y G, HUANG R Y, et al. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria[J]. eLife, 2016, 5: e19605. |
[39] | WANG C L, ZHANG X P, FAN Y L, et al. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice[J]. Molecular Plant, 2015(8): 302. |
[40] | WANG C L, QIN T F, YU H M, et al. The broad bacterial blight resistance of rice line CBB23 is triggered by a novel transcription activator-like (TAL) effector of Xanthomonas oryzae pv. oryzae[J]. Molecular Plant Pathology, 2014, 15(4): 333-341. |
[41] | SIDHU G S, KHUSH G S, MEW T W. Genetic analysis of bacterial blight resistance in seventy-four cultivars of rice, Oryza sativa L.[J]. Theoretical and Applied Genetics, 1978, 53(3): 105-111. |
[42] | CRUZ C M V, BAI J F, OÑA I, et al. Predicting durability of a disease resistance gene based on an assessment of the fitness loss and epidemiological consequences of avirulence gene mutation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(25):13500-13 505. |
[43] | CHEN X F, LIU P C, MEI L, et al. Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial blight disease in rice[J]. Plant Communications, 2021, 2(3): 100 143. |
[44] | LUO D P, HUGUET-TAPIA J C, RABORN R T, et al. The Xa7 resistance gene guards the susceptibility gene SWEET14 of rice against exploitation by bacterial blight pathogen[J]. Plant Communications, 2021, 2(3): 100 164. |
[45] | WANG C Y, CHEN S, FENG A Q, et al. Xa7, a small orphan gene harboring promoter trap for AvrXa7, leads to the durable resistance to Xanthomonasoryzae pv. oryzae[J]. Rice, 2021, 14(1): 48. |
[46] | WEBB K M, OÑA I, BAI J, et al. A benefit of high temperature: increased effectiveness of a rice bacterial blight disease resistance gene[J]. New Phytologist, 2010, 185(2): 568-576. |
[47] | DOSSA G S, QUIBOD I, ATIENZA-GRANDE G, et al. Rice pyramided line IRBB67 (Xa4/Xa7) homeostasis under combined stress of high temperature and bacterial blight[J]. Scientific Reports, 2020, 10(1): 683. |
[48] | ANTONY G, ZHOU J H, HUANG S, et al. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3[J]. Plant Cell, 2010, 22(11): 3 864-3 876. |
[49] | PATHAK M D, CHENG C H, FORTUNO M E. Resistance to Nephotettix impicticeps and Nilaparvata lugens in varieties of rice[J]. Nature, 1969, 223(5 205): 502-504. |
[50] | YE Y D, XIONG S Y, GUAN X, et al. Insight into rice resistance to the brown planthopper: Gene cloning, functional analysis, and breeding applications[J]. International Journal of Molecular Sciences, 2024, 25(24): 13 397. |
[51] | SHI S J, WANG H Y, ZHA W J, et al. Recent advances in the genetic and biochemical mechanisms of rice resistance to brown planthoppers (Nilaparvata lugens Stål)[J]. International Journal of Molecular Sciences, 2023, 24(23): 16 959. |
[52] | HUANG Z, HE G, SHU L, et al. Identification and mapping of two brown planthopper resistance genes in rice[J]. Theoretical & Applied Genetics, 2001, 102(6-7): 929-934. |
[53] | SHI S J, WANG H Y, NIE L Y, et al. Bph30 confers resistance to brown planthopper by fortifying sclerenchyma in rice leaf sheaths[J]. Molecular Plant, 2021, 14(10): 1 714-1 732. |
[54] | DU B, ZHANG W L, LIU B F, et al. Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(52): 22 163-22 168. |
[55] | HU L, WU Y, WU D, et al. The coiled-coil and nucleotide binding domains of BROWN PLANTHOPPER RESISTANCE14 function in signaling and resistance against planthopper in rice[J]. Plant Cell, 2017, 29(12): 3 157-3 185. |
[56] | GUO J P, WANG H Y, GUAN W, et al. A tripartite rheostat controls self-regulated host plant resistance to insects[J]. Nature, 2023, 618(7966): 799-807. |
[57] | CHENG X Y, WU Y, GUO J P, et al. A rice lectin receptor-like kinase that is involved in innate immune responses also contributes to seed germination[J]. The Plant Journal, 2013, 76(4): 687-698. |
[58] | LIU Y Q, WU H, CHEN H, et al. A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice[J]. Nature Biotechnology, 2015, 33(3): 301-305. |
[59] | 杨远柱, 王凯, 谢志梅, 等. 打造企业商业化育种体系推动水稻新质生产力发展[J]. 中国种业, 2025(5): 1-6. |
[1] | 徐春春, 纪龙, 陈中督, 李丹, 方福平. 我国水稻大面积单产提升面临的现实困境与出路[J]. 中国稻米, 2025, 31(4): 1-4. |
[2] | 王军蕊, 陈铭学, 陈红旗. 低镉水稻品种的选育及稻米降镉加工技术研究进展[J]. 中国稻米, 2025, 31(4): 100-104. |
[3] | 邓国富, 戴高兴, 陈韦韦. 广西50年杂交水稻育种回顾、成就及展望[J]. 中国稻米, 2025, 31(4): 105-116. |
[4] | 钱浩宇, 李伟玮, 陈琳, 唐设, 丁承强, 王松寒, 江瑜, 刘正辉, 李刚华, 丁艳锋. 建立均衡高质量健康群体是实现水稻高产优质协同的关键[J]. 中国稻米, 2025, 31(4): 13-18. |
[5] | 金星辰, 黄钰姮, 徐江民, 王克剑, 饶玉春, 刘朝雷. 水稻单倍体育种技术研究进展与展望[J]. 中国稻米, 2025, 31(4): 32-36. |
[6] | 徐青山, 朱春权, 颜玉莲, 王航风, 李尚攀, 迟春欣, 孔亚丽, 朱练峰, 田文昊, 曹小闯, 虞轶俊, 张均华. 稻田土壤健康培育研究进展[J]. 中国稻米, 2025, 31(4): 37-43. |
[7] | 张剑峰, 马世浩, 曹玉东, 李小坤. 我国中低产稻田主要类型及其改良研究进展[J]. 中国稻米, 2025, 31(4): 44-50. |
[8] | 夏宇欣, 凌宇飞, 冯源, 顾元坤, 朱海滨, 许方甫, 李光彦, 高辉, 魏海燕, 张洪程, 胡群. 水稻智能化无人化育插秧技术研究进展[J]. 中国稻米, 2025, 31(4): 51-56. |
[9] | 张闻宇, 吴思进, 张智刚, 丁凡, 何杰, 胡炼, 罗锡文. 水稻智能收获关键技术研究进展[J]. 中国稻米, 2025, 31(4): 57-62. |
[10] | 韦还和, 孟天瑶, 陈英龙, 左文刚, 姚荣江, 高平磊, 许轲, 张洪程, 戴其根. 滨海盐碱地水稻高产形成与栽培技术研究与实践[J]. 中国稻米, 2025, 31(4): 63-70. |
[11] | 刘爱民, 唐文帮. 杂交水稻种子生产加工机械化技术的进步与发展[J]. 中国稻米, 2025, 31(4): 71-78. |
[12] | 王彬, 杨丞, 吴朋浩, 李小坤. 水稻需水量及其影响因素研究[J]. 中国稻米, 2025, 31(4): 79-85. |
[13] | 焦佳宝, 李玲一, 刘永健, 陈相甫, 罗举, 杨保军, 姚青, 刘淑华. 基于改进EfficientNet-V2的水稻病虫害识别系统研究[J]. 中国稻米, 2025, 31(4): 86-95. |
[14] | 卓富彦, 张熠玚, 郭永旺, 刘慧, 鄂文弟. “十四五”期间我国水稻病虫害发生规律演变与绿色防控技术集成创新[J]. 中国稻米, 2025, 31(4): 9-12. |
[15] | 王强盛, 张慧, 沈叶, 曹红灵, 丁万里, 徐娅, 刘为浒. 农作物秸秆肥料化利用的绿色低碳分析[J]. 中国稻米, 2025, 31(4): 96-99. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||