中国稻米 ›› 2024, Vol. 30 ›› Issue (5): 49-56.DOI: 10.3969/j.issn.1006-8082.2024.05.006

• 专论与研究 • 上一篇    下一篇

一种基于深度学习的水稻种子分类方法

王晓飞(), 刘维, 巫浩翔, 陈浩, 张丽婷, 潘朝阳, 何秀英*()   

  1. 广东省农业科学院水稻研究所/农业农村部华南优质稻遗传育种重点实验室(部省共建)/广东省水稻育种新技术重点实验室/广东省水稻工程实验室,广州 510640
  • 收稿日期:2024-07-31 出版日期:2024-09-20 发布日期:2024-09-12
  • 通讯作者: *xyhe@163.com
  • 作者简介:

    第一作者:wangxiaofei@gdaas.cn

  • 基金资助:
    广东省自然科学基金(2021A1515010820);广东省水稻育种新技术重点实验室项目(2023B1212060042)

A Method of Rice Seed Classification Based on Deep Learning

WANG Xiaofei(), LIU Wei, WU Haoxiang, CHEN Hao, Zhang Liting, PAN Zhaoyang, HE Xiuying*()   

  1. Rice Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Genetics and Breeding of High Quality Rice in South China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China

摘要:

水稻是一种重要的粮食作物,其种子质量特别是纯度直接影响着水稻的产量和品质。传统的种子分类方法主要依靠人工视觉,效率低、误差率高。为了提高水稻种子分类的准确性和效率,建立了一种基于深度学习的水稻种子分类方法。本研究自行拍摄并构建了5个不同水稻品种含有80 000张水稻种子图片数据集,首先利用卷积神经网络(CNN)从水稻种子图像中提取特征,然后利用自建RiceFastNet模型对提取的特征分类。结果表明,该方法在识别外观相似度较高的不同品种水稻种子时,分类准确率超过96%,优于传统的种子分类方法。本研究提出的新方法在提高水稻种子检测准确率方面具有潜力和优势。

关键词: 水稻, 种子分类, 深度学习, 卷积神经网络

Abstract:

Rice is an important cereal crops, and its seed quality, especially its purity, directly affects the yield and quality of rice. Traditional seed classification methods mainly rely on artificial vision, which is inefficient and has a high error rate. In order to improve the accuracy and efficiency of rice seed classification, a method of rice seed classification based on deep learning was proposed. In this study, a dataset containing 80,000 rice seed images of five different rice varieties was self-captured and constructed. The method first used convolutional neural network(CNN) to extract features from rice seed images, and then used self-built RiceFastNet to classify the extracted features. The results showed that this method still achieved a classification accuracy of over 96% when identifying rice seeds of different varieties with high appearance similarity, which is superior to traditional seed classification methods. The new method established in this study has the potential and advantages in improving the accuracy of rice seed detection.

Key words: rice, seed classification, deep learning, convolutional neural network

中图分类号: