[1] |
RUBAIYATH BIN RAHMAN A N M, ZHANG J H. Trends in rice research: 2030 and beyond[J]. Food and Energy Security, 2022, 12(2): 1-17.
|
[2] |
LU Y, ZHANG X, ZENG N, et al. Image classification and identification for rice leaf diseases based on improved WOACW_SimpleNet[J]. Frontiers in Plant Science, 2022, 13: 1 008 819.
|
[3] |
SHARMA G, ANAND V, KUMAR V. A suitable approach for classifying skin disease using deep convolutional neural network[C]// 2023 World Conference on Communication & Computing. New York: Institute of Electrical and Electronics Engineers, 2023.
|
[4] |
SHARMA G, ANAND V, CHAUHAN R, et al. From paddy to pixel: An in-depth exploration into classifying diverse rice varieties leveraging advanced convolutional neural network architectures[C]// 2023 Global Conference on Information Technologies and Communications. New York: Institute of Electrical and Electronics Engineers, 2023.
|
[5] |
NAIK N K, SETHY P K, DEVI A G, et al. Hybrid enhanced featured AlexNet for milled rice grain identification[J]. Ingénierie des Systèmes d'Information, 2023, 28(3): 663-668.
|
[6] |
CHEN L Y, LI S B, BAI Q, et al. Review of image classification algorithms based on convolutional neural networks[J]. Remote Sensing, 2021, 13(22): 4 712.
|
[7] |
FELIZARDO K B, PAREDES A M C, ARBOLEDA E R. Advancements in Artificial Intelligence (AI) for enhanced insights and automation in rice agriculture: A systematic review[J]. International Journal of Science and Research Archive, 2024, 11(1): 444-463.
|
[8] |
PEKER N. Classification of rice varieties using a deep neural network model[C]// International Symposium on Intelligent Manufacturing and Service Systems. Singapore: Springer Nature Singapore, 2023: 510-521.
|
[9] |
季长清, 高志勇, 秦静, 等. 基于卷积神经网络的图像分类算法综述[J]. 计算机应用, 2022, 42(4):1044-1 049.
|
[10] |
阙昊天, 赵鑫, 黄敏, 等. 基于特征波段卷积神经网络的小麦种子品种分类研究[J]. 中国粮油学报, 2023, 38(5):141-148.
|
[11] |
黄琼. 基于图像的水稻种子品种分类识别方法研究[D]. 南昌: 江西农业大学, 2022.
|
[12] |
SINGH R, SHARMA N, GUPTA R. Rice type classification using proposed CNN model[C]// 2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN). New York: Institute of Electrical and Electronics Engineers, 2023.
|
[13] |
MOHAMED ALI Z M G H. A Comparative study between traditional machine learning and deep learning models to classify rice types[D]. Dublin:National College of Ireland, 2023.
|
[14] |
SINGH H, MADHOK H, JULKA N. Rice kernels classification with deep learning using a modified dataset mimicking real-world conditions[J]. Educational Research (IJMCER), 2023, 5(3): 15-23.
|
[15] |
SETIAWAN R, OUMAROH H. Classification of rice grain varieties using ensemble learning and image analysis techniques[J]. Indonesian Journal of Data and Science, 2024, 5(1): 54-63.
|
[16] |
叶文超, 罗水洋, 李金豪, 等. 近红外光谱与图像融合的杂交水稻种子分类方法研究[J]. 光谱学与光谱分析, 2023, 43(9):2935-2 941.
|
[17] |
SOKUDLOR N, LALOON K, JUNSIRI C, et al. Enhancing milled rice qualitative classification with machine learning techniques using morphological features of binary images[J]. International Journal of Food Properties, 2023, 26(2), 2 978-2 992.
|
[18] |
DIN N M U, ASSAD A, DAR R A, et al. RiceNet: A deep convolutional neural network approach for classification of rice varieties[J]. Expert Systems with Applications, 2024, 235: 121 214.
|
[19] |
DOGAN M, TASPINAR Y S, CINAR I, et al. Dry bean cultivars classification using deep cnn features and salp swarm algorithm based extreme learning machine[J]. Computers and Electronics in Agriculture, 2023, 204: 107 575.
|
[20] |
TASCI M, ISTANBULLU A, KOSUNALP S, et al. An efficient classification of rice variety with quantized neural networks[J]. Electronics, 2023, 12(10): 2 285.
|
[21] |
RAJALAKSHMI R, FAIZAL S, SIVASANKARAN S, et al. RiceSeedNet: Rice seed variety identification using deep neural network[J]. Journal of Agriculture and Food Research, 2024, 16: 101 062.
|
[22] |
OROZCO J, MANIAN V, ALFARO E, et al. Graph convolutional network using adaptive neighborhood Laplacian matrix for hyperspectral images with application to rice seed image classification[J]. Sensors, 2023, 23(7): 3 515.
|
[23] |
阙昊天. 基于深度神经网络的小麦品种高光谱图像识别[D]. 无锡: 江南大学, 2023
|
[24] |
WANG Y, SONG S Y. Variety identification of sweet maize seeds based on hyperspectral imaging combined with deep learning[J]. Infrared Physics & Technology, 2023, 130: 104 611.
|
[25] |
LIU W H, ZENG S, WU G J, et al. Rice seed purity identification technology using hyperspectral image with LASSO logistic regression model[J]. Sensors, 2021, 21(13): 4 384.
|
[26] |
MENG Y, YUAN W S, AKTILEK E U, et al. Fine hyperspectral classification of rice varieties based on self-attention mechanism[J]. Ecological Informatics, 2023, 75: 102 035.
|
[27] |
KANG Z, FAN R, ZHAN C, et al. The rapid non-destructive differentiation of different varieties of rice by fluorescence hyperspectral technology combined with machine learning[J]. Molecules, 2024, 29(3): 682.
|
[28] |
LI C, TAN Y, LIU C, et al. Spectral fusion based on hyperspectral imaging technology for discrimination of rice varieties[J]. Preprints 2024.
|
[29] |
MAKMUANG S, TERDWONGWORAKUL A, VILAIVAN T, et al. Mapping hyperspectral NIR images using supervised self-organizing maps: Discrimination of weedy rice seeds[J]. Microchemical Journal, 2023, 190: 108 599.
|
[30] |
孟颖. 基于双尺度高光谱信息的寒地水稻品种精细分类研究[D]. 哈尔滨: 东北农业大学, 2023.
|
[31] |
徐元统. 基于高光谱的水稻品种鉴别系统设计与实现[D]. 哈尔滨: 黑龙江大学, 2019.
|
[32] |
SINGH V, GOURISARIA M K, GM H, et al. Weed detection in soybean crop using deep neural network[J]. Pertanika Journal of Science & Technology, 2023, 31(1): 401-423.
|
[33] |
PAN W T, SUN M L, YUN Y, et al. Identification method of wheat grain phenotype based on deep learning of ImCascade R-CNN[J]. Smart Agriculture, 2023, 5(3): 110-120.
|
[34] |
YASAR A, GOLCUK A, SARI O F. Classification of bread wheat varieties with a combination of deep learning approach[J]. European Food Research and Technology, 2024, 250(1): 181-189.
|
[35] |
ZHANG N, ZHANG E, LI F. A soybean classification method based on data balance and deep learning[J]. Applied Sciences, 2023, 13(11): 6 425.
|
[36] |
SABLE A, SINGH P, KAUR A, et al. Quantifying soybean defects: A computational approach to seed classification using deep learning techniques[J]. Agronomy, 2024, 14(6): 1 098.
|
[37] |
ÜNAL Z, AKTAS H. Classification of hazelnut kernels with deep learning[J]. Postharvest Biology and Technology, 2023, 197: 112 225.
|
[38] |
BAYRAM F, YILDIZ M. Classification of some barley cultivars with deep convolutional neural networks[J]. Journal of Agricultural Sciences, 2023, 29(1): 262-271.
|