[1] |
蔡晶, 王晓光, 季芝娟, 等. 水稻叶片形态的遗传与分子生物学研究进展[J]. 中国稻米, 2008, 14(6):5-11.
|
[2] |
周开达, 马玉清, 刘太清, 等. 杂交水稻亚种间重穗型组合选育 ——杂交水稻超高产育种的理论与实践[J]. 四川农业大学学报, 1995, 13(4):403-407.
|
[3] |
KHUSH G S. Prospects and approaches to increasing the genetic yield potential of rice[M]// EVENSON R E, HETDT R W, HOSSAIN M, eds. Rice Research in Asia,Progress and Priorities. Wallingford, UK: CAB International and IRRI, 1996:59-71.
|
[4] |
袁隆平. 杂交水稻超高产育种[J]. 杂交水稻, 1997, 12(6):4-9.
|
[5] |
常硕其, 粟琳, 欧阳翔. 水稻产量提高与光合作用之间相互关系[J]. 生命科学, 2024, 36(10):1 305-1 310.
|
[6] |
许娜, 徐铨, 徐正进, 等. 水稻株型生理生态与遗传基础研究进展[J]. 作物学报, 2023, 49(7):1 735-1 746.
|
[7] |
ISHII R. Photosynthesis and respiration in a single leaf[M]// MATSUO T, KUMAZAWA K, ISHII R, et al. Science of the Rice Plant Physiology. Tokyo, Japan: Food and Agriculture Policy Research Center,1995:491-495.
|
[8] |
CHEN Y D, ZHANG X, ZHOU X Q, et al. Preliminary studies on thickness of nondestructive rice (Oryza sativa L.) leaf blade[J]. Agricultural Sciences in China, 2007, 6(7):802-807.
|
[9] |
YUAN S, LI Y, PENG S B. Leaf lateral asymmetry in morphological and physiological traits of rice plant[J]. PLoS One, 2015, 10(6):e129832.
|
[10] |
李杰, 冯跃华, 麻井彪, 等. 2个超级杂交水稻剑叶主脉两侧SPAD值的差异表现[J]. 核农学报, 2017, 31(4):777-786.
|
[11] |
LI J, FENG Y H, PENG J F, et al. Location distribution characteristics in leaf lateral asymmetry of hybrid indica rice[J]. Phyton-International Journal of Experimental Botany, 2020, 89(3):657-666.
|
[12] |
YUAN S, GORON T L, HUANG L Y, et al. Rice leaf lateral asymmetry in the relationship between spad and area-based nitrogen concentration[J]. Symmetry (Basel), 2017, 9(6):83.
|
[13] |
李杰, 冯跃华, 牟桂婷, 等. 剪叶、粘叶处理对水稻剑叶主脉两侧SPAD值及籽粒产量的影响[J]. 中国稻米, 2018, 24(6):40-46.
|
[14] |
姚栋萍, 刘春林, 吴丹, 等. 水稻叶形遗传调控机理的研究进展[J]. 湖南农业科学, 2014(10):6-9.
|
[15] |
饶玉春, 胡娟, 金哲伦, 等. 水稻叶形控制基因的挖掘及分析[J]. 浙江师范大学学报(自然科学版), 2019, 42(3):316-323.
|
[16] |
陈达刚, 周新桥, 李丽君, 等. 水稻叶厚性状的研究进展[J]. 农学学报, 2015, 5(11):22-25.
|
[17] |
陈洪娟, 商晨阳, 黄梅艳, 等. 水稻叶片夹角调控机制的研究进展[J]. 分子植物育种, 2023, 21(13):4 427-4 437.
|
[18] |
李蓓, 莫凯琴, 马银花. 水稻卷叶基因研究进展[J]. 安徽农学通报, 2021, 27(6):14-18.
|
[19] |
戴若惠, 钱心妤, 孙静蕾, 等. 水稻叶色调控机制及相关基因研究进展[J]. 植物学报, 2023, 58(5):799-812.
|
[20] |
冯慧, 吴孝波, 黄强, 等. 水稻两系窄叶突变体Fz1S的表型分析与基因定位[J]. 西南农业学报, 2020, 33(12):2 702-2 706.
|
[21] |
徐静, 王莉, 钱前, 等. 水稻叶片形态建成分子调控机制研究进展[J]. 作物学报, 2013, 39(5):767-774.
|
[22] |
陈代波, 程式华, 曹立勇. 水稻窄叶性状的研究进展[J]. 中国稻米, 2010, 16(3):1-4.
|
[23] |
潘境涛, 谢红卫, 钱明娟, 等. 水稻窄叶突变体相关基因的研究进展[J]. 分子植物育种, 2017, 15(12):4 879-4 887.
|
[24] |
ZHANG X, ZONG J, LIU J H, et al. Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar[J]. Journal of Integrative Plant Biology, 2010, 52(11):1 016-1 026.
|
[25] |
HONDA E, YEW C L, YOSHIKAWA T, et al. LEAF LATERAL SYMMETRY1, a member of the WUSCHEL-RELATED HOMEOBOX3 gene family, regulates lateral organ development differentially from other paralogs, NARROW LEAF2 and NARROW LEAF3 in rice[J]. Plant and Cell Physiology, 2018, 59(2):376-391.
|
[26] |
OBARA M, IKEDA K, ITOH J I, et al. Characterization of leaf lateral symmetiy 1 mutant in rice[J]. Breeding Science, 2004, 54:157-163.
|
[27] |
方云霞, 朱丽, 潘江杰, 等. 水稻窄叶突变体nal10的鉴定与基因精细定位[J]. 中国水稻科学, 2015, 29(6):587-594.
|
[28] |
严松, 严长杰, 顾铭洪. 植物叶发育的分子机理[J]. 遗传, 2008, 30(9):1 127-1 135.
|
[29] |
柴靓, 何靖, 高志宏, 等. 植物叶片发育及形态建成的研究进展[J]. 种子, 2018, 37(3):46-48.
|
[30] |
龙海馨, 邱海阳, MUHAMMAD U, 等. 水稻窄叶突变体nal20的表型分析与基因定位[J]. 作物学报, 2018, 44(9):1 301-1 310.
|
[31] |
MATHER K. Genetical control of stability in development[J]. Heredity, 1953, 7:297-336.
|
[32] |
THODAY J M. Homeostasis in a selection experiment[J]. Heredity, 1958, 12:401-415.
|
[33] |
PALMER A R, STROBECK C. Fluctuating asymmetry: Measurement, analysis, patterns[J]. Annual Review of Ecology and Systematics, 1986, 17:391-421.
|
[34] |
张晖, 陈秋生. 鸡胚器官左右不对称性发育的研究进展[J]. 动物医学进展, 2005, 26(12):29-35.
|
[35] |
WARNER J F, MCCLAY D R. Left-right asymmetry in the sea urchin[J]. Genesis, 2014, 52(6):481-487.
|
[36] |
DJENOUNE L, MAHAMDEH M, TRUONG T V, et al. Cilia function as calcium-mediated mechanosensors that instruct left-right asymmetry[J]. Science, 2023, 379(6627):71-78.
|
[37] |
陆宏, 党洁, 霍正浩, 等. 生物体波动性不对称与人类疾病的研究进展[J]. 宁夏医科大学学报, 2011, 33(9):899-901.
|
[38] |
GRAHAM J, ÖZENER B. Fluctuating asymmetry of human populations: a review[J]. Symmetry (Basel), 2016, 8(12):154.
|
[39] |
周敏, 朱学农, 黄译, 等. 睾丸不对称性对宁都黄公鸡体重、第二性征的影响[J]. 中国畜牧杂志, 2024, 60(9):185-187, 191.
|
[40] |
GAVRIKOV D E, ZVEREV V, RACHENKO M A, et al. Experimental evidence questions the relationship between stress and fluctuating asymmetry in plants[J]. Symmetry (Basel), 2023, 15(2):339.
|
[41] |
ZVEREV V, LAMA A D, KOZLOV M V. Fluctuating asymmetry of birch leaves did not increase with pollution and drought stress in a controlled experiment[J]. Ecological Indicators, 2018, 84:283-289.
|
[42] |
MÁJEKOVÁ M, SPRINGER B, FERENC V, et al. Leaf fluctuating asymmetry is not a reliable indicator of stress[J]. Functional Ecology, 2024, 38(6):1 447-1 457.
|
[43] |
HAGEN S B, IMS R A, YOCCOZ N G, et al. Fluctuating asymmetry as an indicator of elevation stress and distribution limits in mountain birch (Betula pubescens)[J]. Plant Ecology, 2008, 195(2):157-163.
|
[44] |
BARANOV S G, ZYKOV I E, KUZNETSOVA D D, et al. Environmental factors influencing expression of bilateral symmetrical traits[J]. IOP Conference Series. Earth and Environmental Science, 2020, 421(5):52 029.
|
[45] |
EROFEEVA E A, YAKIMOV B N. Change of leaf trait asymmetry type in Tilia cordata Mill. and Betula pendula Roth under air pollution[J]. Symmetry (Basel), 2020, 12(5):727.
|
[46] |
SINCLAIR C, HOFFMANN A A. Developmental stability as a potential tool in the early detection of salinity stress in wheat[J]. International Journal of Plant Sciences, 2003, 164:325-331.
|
[47] |
MAL T K, UVEGES J L, TURK K W. Fluctuating asymmetry as an ecological indicator of heavy metal stress in Lythrum salicaria[J]. Ecological Indicators, 2002, 1(3):189-195.
|
[48] |
ALVES-SILVA E, DEL-CLARO K. Effect of post-fire resprouting on leaffluctuating asymmetry, extrafloral nectarquality, and ant plant herbivore interactions[J]. Naturwissenschaften, 2013, 100(6):525-532.
|
[49] |
BLACK-SAMUELSSON S, ANDERSSON S. The effect of nutrient stress on developmental instability in leaves of Acer platanoides (Aceraceae) and Betula pen-dula (Betulaceae)[J]. American Journal of Botany, 2003, 90:1 107-1 112.
|
[50] |
BARANOV S G, ZYKOV I E, KUZNETSOVA D D, et al. Evaluation of shape and asymmetry in rye leaf[J]. IOP Conference Series. Earth and Environmental Science, 2020, 548(3):32 001.
|
[51] |
CHITWOOD D H, HEADLAND L R, RANJAN A, et al. Leaf asymmetry as a developmental constraint imposed by auxin-dependent phyllotactic patterning[J]. Plant Cell, 2012, 24(6):2 318-2 327.
|
[52] |
MARTINEZ C C, CHITWOOD D H, SMITH R S, et al. Left-right leaf asymmetry in decussate and distichous phyllotactic systems[J]. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 2016, 371:20 150 412.
|
[53] |
NIKIFOROU C, MANETAS Y. Ecological stress memory: evidence in two out of seven species through the examination of the relationship between leaf fluctuating asymmetry and photosynthesis[J]. Ecological Indicators, 2017, 74:530-534.
|
[54] |
CHITWOOD D H, NAYLOR D T, THAMMAPICHAI P, et al. Conflict between intrinsic leaf asymmetry and phyllotaxis in the resupinate leaves of alstroemeria psittacina[J]. Frontiers in Plant Science, 2012, 3:182.
|
[55] |
程如意, 范红军, 宋洁, 等. 太行山猕猴锁骨方向不对称研究[J]. 河南师范大学学报(自然科学版), 2014, 42(3):125-128.
|
[56] |
PELABON C, HANSEN T F, CARLSON M L, et al. Patterns of asymmetry in the twining vine Dalechampia scandens (Euphorbiaceae): Ontogenetic and hierarchical perspectives[J]. New Phytologist, 2006, 170(1):65-74.
|
[57] |
吕川根, 宗寿余, 姚克敏, 等. 水稻叶片形态因子的遗传力分析[J]. 江苏农业学报, 2006, 22(2):95-99.
|