[1] |
PARIDA A K, DAS A B. Salt tolerance and salinity effects on plants: a review[J]. Ecotoxicology and Environmental Safety, 2005, 60(3):324-349.
|
[2] |
HUANG W J, ZHOU G Y, LIU J X, et al. Mineral elements of subtropical tree seedlings in response to elevated carbon dioxide and nitrogen addition[J]. PLoS One, 2015, 10(3):e0120190.
|
[3] |
杨劲松. 中国盐渍土研究的发展历程与展望[J]. 土壤学报, 2008, 45(5):837-845.
|
[4] |
徐春春, 纪龙, 陈中督, 等. 2023年我国水稻产业形势分析及2024年展望[J]. 中国稻米, 2024, 30(2):1-4.
|
[5] |
张瑞珍, 邵玺文, 童淑媛, 等. 盐碱胁迫对水稻源库与产量的影响[J]. 中国水稻科学, 2006, 20(1):116-118.
|
[6] |
YAO W Q, LEI Y K, YANG P, et al. Exogenous glycinebetaine promotes soil cadmium uptake by edible amaranth grown during subtropical hot season[J]. International Journal of Environmental Research and Public Health, 2018, 15(9):1 794.
|
[7] |
肖丹丹. 不同浓度盐水灌溉对水稻产量、叶片生理特性及品质的影响[D]. 扬州: 扬州大学, 2020.
|
[8] |
BORIBOONKASET T, THEERAWITAYA C, YAMADA N, et al. Regulation of some carbohydrate metabolism-related genes, starch and soluble sugar contents, photosynthetic activities and yield attributes of two contrasting rice genotypes subjected to salt stress[J]. Protoplasma, 2013, 250:1 157-1 167.
|
[9] |
FAROOQ M A, NIAZI A K, AKHTAR J, et al. Acquiring control: The evolution of ROS-induced oxidative stress and redox signaling pathways in plant stress responses[J]. Plant Physiology and Biochemistry, 2019, 141:353-369.
|
[10] |
刘铎, 白爽, 李平, 等. 硅调控植物耐盐碱机制研究进展[J]. 麦类作物学报, 2019, 39(12):1 507-1 513.
|
[11] |
YEO A R, FLOWERS S A, RAO G, et al. Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow[J]. Plant, Cell and Environment, 1999, 22(5):559-565.
|
[12] |
饶立华, 覃莲祥, 朱玉贤, 等. 硅对杂交稻形态结构和生理的效应[J]. 植物生理学通讯, 1986(3):20-24.
|
[13] |
朱永兴, 夏雨晨, 刘乐承, 等. 外源硅对植物抗盐性影响的研究进展[J]. 植物营养与肥料学报, 2019, 25(3):498-509.
|
[14] |
束良佐, 刘英慧. 硅对盐胁迫下玉米幼苗生长的影响[J]. 农业环境保护, 2001, 20(1):38-40.
|
[15] |
陈罡, 樊平声, 冯伟民, 等. 外源硅对盐胁迫下黄瓜幼苗生长和光合荧光特性的影响[J]. 江苏农业学报, 2014, 30(6):1 402-1 409.
|
[16] |
裴福云, 董超文, 段继贤, 等. 喷施不同纳米硅肥对红苋菜增产效果研究[J]. 安徽农业科学, 2015, 43(12):76-78.
|
[17] |
郭树勋. 纳米硅对低温胁迫下番茄根系养分吸收及微生物组的影响[D]. 太原: 山西农业大学, 2023.
|
[18] |
黄炳川. 鼠李糖脂和纳米硅肥对棉花耐盐特性的影响[D]. 阿拉尔: 塔里木大学, 2022.
|
[19] |
颜佳倩. 盐胁迫下耐盐性不同水稻品种的农艺与生理特性[D]. 扬州: 扬州大学, 2022.
|
[20] |
申勇, 谢昊, 潘竹栋, 等. 不同氮效率粳稻品种的冠层特征[J]. 作物杂志, 2021, 37(1):90-97.
|
[21] |
GIANNOPOLITIS C N, RIES S K. Superoxide dismutases: I. Occurrence in higher plants[J]. Plant Physiology, 1977, 59(2):309-314.
|
[22] |
AEBI H. Catalase in vitro[J]. Methods in Enzymology, 1984, 105:121-126.
|
[23] |
KOCHBA J, LAVEE S, SPIEGEL-ROY P. Differences in peroxidase activity and isoenzymes in embryogenic ane non-embryogenic ‘Shamouti’ orange ovular callus lines[J]. Plant and Cell Physiology, 1977, 18(2):463-467.
|
[24] |
HODGES D M, DELONG J M, FORNEY C F, et al. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds[J]. Planta, 1999, 207:604-611.
|
[25] |
许阳东, 朱宽宇, 章星传, 等. 绿色超级稻品种的农艺与生理性状分析[J]. 作物学报, 2019, 45(1):70-80.
|
[26] |
WEI L X, LV B S, LI X W, et al. Priming of rice (Oryza sativa L.) seedlings with abscisic acid enhances seedling survival, plant growth, and grain yield in saline-alkaline paddy fields[J]. Field Crops Research, 2017, 203:86-93.
|
[27] |
MUNNS R. Comparative physiology of salt and water stress[J]. Plant, Cell and Environment, 2002, 25(2):239-250.
|
[28] |
高兵兵, 郑春芳, 徐军田, 等. 缘管浒苔和浒苔对海水盐度胁迫的生理响应[J]. 应用生态学报, 2012, 23(7):1 913-1 920.
|
[29] |
周根友, 翟彩娇, 邓先亮, 等. 盐逆境对水稻产量、光合特性及品质的影响[J]. 中国水稻科学, 2018, 32(2):146-154.
|
[30] |
龚金龙, 胡雅杰, 龙厚元, 等. 不同时期施硅对超级稻产量和硅素吸收、利用效率的影响[J]. 中国农业科学, 2012, 45(8):1 475-1 488.
|
[31] |
刘梦霜, 郭海峰, 陈观秀, 等. 不同水稻品种对NaCl胁迫的生理响应及耐盐性评价[J]. 热带作物学报, 2023, 44(2):326-336.
|
[32] |
HARLEY P C, LORETO F, DI MARCO G, et al. Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2[J]. Plant Physiology, 1992, 98(4):1 429-1 436.
|
[33] |
CASTRO-DÍEZ P, PUYRAVAUD J P, CORNELISSEN J H C. Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types[J]. Oecologia, 2000, 124:476-486.
|
[34] |
YIN F M, ZHANG S Y, CAO B L, et al. Low pH alleviated salinity stress of ginger seedlings by enhancing photosynthesis, fluorescence, and mineral element contents[J]. Peer Journal, 2021, 9:e10832.
|
[35] |
李海波. 水分亏缺和盐胁迫对水稻叶片气孔及其他生理性状的影响[D]. 沈阳: 沈阳农业大学, 2004.
|
[36] |
闫国超, 樊小平, 谭礼, 等. 盐胁迫下添加外源硅提高水稻抗氧化酶活性与钠钾平衡相关基因表达[J]. 植物营养与肥料学报, 2020, 26(11):1 935-1 943.
|
[37] |
BYRT C S, MUNNS R. Living with salinity[J]. The New Phytologist, 2008, 179(4):903-905.
|
[38] |
孟元发. 外源硅对苜蓿盐胁迫的缓解效应及调控机理[D]. 呼和浩特: 内蒙古大学, 2020.
|
[39] |
崔云浩, 梁祎, 王军娥, 等. 纳米硅对盐胁迫下甜椒幼苗生长及抗氧化特性的影响[J]. 山西农业科学, 2021, 49(10):1 162-1 165.
|