[1] |
赵忠权. 水稻种植与病虫害防治技术探讨[J]. 种子科技, 2025, 43(5): 169-171.
|
[2] |
钱啸. 数据要素视角下的水稻病虫害监测技术应用集成研究[D]. 扬州: 扬州大学, 2024.
|
[3] |
刘洋. 手机端植物病害识别与严重程度估计[D]. 兰州: 甘肃农业大学, 2021.
|
[4] |
SHENG H Y, YAO Q, LUO J, et al. Automatic detection and counting of planthoppers on white flat plate images captured by AR glasses for planthopper field survey[J]. Computers and Electronics in Agriculture, 2024, 218: 108 639.
|
[5] |
张志从, 崔东, 郭金锋, 等. 基于迁移学习ResNet-18的水稻病虫害识别研究[J]. 中国农学通报, 2025, 41(2): 109-116.
|
[6] |
刘鹏, 张天翼, 冉鑫, 等. 基于PBM-YOLOv8的水稻病虫害检测[J]. 农业工程学报, 2024, 40(20): 147-156.
|
[7] |
RAHMAN C R, ARKO P S, ALI M E, et al. Identification and recognition of rice diseases and pests using convolutional neural networks[J]. Biosystems Engineering, 2020, 194: 112-120.
|
[8] |
NI H, SHI Z, KARUNGARU S, et al. Classification of typical pests and diseases of rice based on the ECA attention mechanism[J]. Agriculture, 2023, 13(5): 1066.
|
[9] |
WU X P, ZHAN C, LAI Y K, et al. Ip102: A large-scale benchmark dataset for insect pest recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 8 787-8 796.
|
[10] |
TAN M X, LE Q V. Efficientnetv2:Smaller models and faster training[EB/OL].(2021-06-23)[2025-04-23].
|
[11] |
HOANG V T, HOANG V D, JO K H. Rethinking mobile inverted bottleneck convolution for EfficientNet[C]//International Conference on Green Technology and Sustainable Development, 2022: 435-445.
|
[12] |
KOONCE B. Convolutional neural networks with swift for tensorflow: Image recognition and dataset categorization[M]. Berkeley, CA, USA: Apress, 2021: 109-123.
|
[13] |
JIE H, LI S, ALBANIE S. Squeeze-and-excitation networks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7 132-7 141.
|
[14] |
LENG Z Q, TAN M X, LIU C X, et al. Polyloss: A polynomial expansion perspective of classification loss functions[EB/OL].(2022-05-10)[2025-04-23].
|
[15] |
WOO S, PARK J, LEE J, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
|
[16] |
MAO A Q, MOHRI M, ZHONG Y T. Cross-entropy loss functions: Theoretical analysis and applications[C]//International Conference on Machine Learning, 2023: 23 803-23 828.
|
[17] |
RUDER S. An overview of gradient descent optimization algorithms[EB/OL].(2017-06-15)[2025-04-23].
|
[18] |
LOSHCHILOV I, HUTTER F S. Stochastic gradient descent with warm restarts. 2016 [EB/OL].(2017-05-03)[2025-04-23].
|
[19] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
[20] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words:Transformers for image recognition at scale[J/OL]. arXiv.
|
[21] |
ANDREW G, MENGLONG Z. Efficient convolutional neural networks for mobile vision applications[J]. Mobilenets, 2017, 10: 151.
|
[22] |
ZHENG H, FU J, ZHA Z, et al. Learning deep bilinear transformation for fine-grained image representation[J]. Advances in Neural Information Processing Systems, 2019, 32: 4 279-4 288.
|
[23] |
QIAN Y, XIAO Z, DENG Z. Fine-grained crop pest classification based on multi-scale feature fusion and mixed attention mechanisms[J]. Frontiers in Plant Science, 2025, 16: 1 500 571.
|
[24] |
PENG Y, WANG Y. Optimizing agricultural classification with masked image modeling[J]. Cogent Food & Agriculture, 2025, 11(1): 2 462 243.
|