| [1] |
YAN J L, WANG P T, WANG P, et al. A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of japonica rice cultivars[J]. Plant, Cell & Environment, 2016, 39(9): 1 941-1 954.
|
| [2] |
丁仕林, 刘朝雷, 钱前, 等. 水稻重金属镉吸收和转运的分子遗传机制研究进展[J]. 中国水稻科学, 2019, 33(5):383-390.
|
| [3] |
李婷, 胡敏骏, 徐君, 等. 镉低积累水稻品种选育研究进展[J]. 中国农业科技导报, 2021, 23(11):36-46.
|
| [4] |
罗利军. 节水抗旱稻的培育与应用[J]. 生命科学, 2018, 30(10):1 108-1 112.
|
| [5] |
马孝松, 曾贤军, 李恩熙, 等. 水稻耐旱性及其研究进展[J]. 上海农业学报, 2022, 38(4):36-45.
|
| [6] |
NING J, LI X H, HICKS L M, et al. A raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice[J]. Plant Physiology, 2010, 152(2): 876-890.
|
| [7] |
YANG S Q, XU K, CHEN S J, et al. A stress-responsive bZIP transcription factor OsbZIP62 improves drought and oxidative tolerance in rice[J]. BMC Plant Biology, 2019, 19(1): 260.
|
| [8] |
WU X L, SHIROTO Y, KISHITANI S, et al. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter[J]. Plant Cell Reports, 2009, 28(1): 21-30.
|
| [9] |
XU K, CHEN S J, LI T F, et al. OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes[J]. BMC Plant Biology, 2015, 15(1): 141.
|
| [10] |
ZHOU L G, LIU Z C, LIU Y H, et al. A novel gene OsAHL1 improves both drought avoidance and drought tolerance in rice[J]. Scientific Reports, 2016, 6: 30 264.
|
| [11] |
BRADBOURY P, ZHANG Z, KROON D, et al. TASSEL: Software for association mapping of complex traits in diverse samples[J]. Bioinformatics, 2007, 23(19): 2 633-2 635.
|
| [12] |
ZHANG Z W, ERSOZ E, LAI C Q, et al. Mixed linear model approach adapted for genome-wide association studies[J]. Nature Genetics, 2010, 42(4): 355-360.
|
| [13] |
MCCOUCH S, CGSNL (Committee on Gene Symbolization, Nomenclature and Linkage, Rice Genetics Cooperative).Gene nomenclature system for rice[J]. Rice, 2008, 1(1): 72-84.
|
| [14] |
DUAN G L, SHAO G S, TANG Z, et al. Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars[J]. Rice, 2017, 10(1): 9.
|
| [15] |
王璐瑶, 陈謇, 赵守清, 等. 水稻镉积累特性的生理和分子机制研究概述[J]. 植物学报, 2022, 57(2),236-249.
|
| [16] |
ISHIKAWA S, ISHIMARU Y, IGURA M, et al. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(47): 19 166-19 171.
|
| [17] |
ISHIMARU Y, TAKAHASHI R, BASHIR K, et al. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport[J]. Scientific Reports, 2012, 2: 286.
|
| [18] |
TAKAHASHI R, ISHIMARU Y, SENOURA T, et al. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice[J]. Journal of Experimental Botany, 2011, 62(14): 4 843-4 850.
|
| [19] |
TANG L, MAO B, LI Y, et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield[J]. Scientific Reports, 2017, 7: 14 438.
|
| [20] |
CAMPO S, BALDRICH P, MESSEGUER J, et al. Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation[J]. Plant Physiology, 2014, 165(2): 688-704.
|
| [21] |
LIM S, LEE C, JANG C. The rice RING E3 ligase, OsCTR1, inhibits trafficking to the chloroplasts of OsCP12 and OsRP1, and its overexpression confers drought tolerance in Arabidopsis[J]. Plant, Cell & Environment, 2014, 37(5): 1 097-1 113.
|
| [22] |
LIU J, ZHANG F, ZHOU J J, et al. Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice[J]. Plant Molecular Biology, 2012, 78(3): 289-300.
|
| [23] |
PIAO H L, XUAN Y H, PARK S H, et al. OsCIPK31, a CBL-interacting protein kinase is involved in germination and seedling growth under abiotic stress conditions in rice plants[J]. Molecules and Cells, 2010, 30(1): 19-28.
|
| [24] |
DUAN J L, CAI W M. OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance[J]. PLoS One, 2012, 7(9): e45117.
|
| [25] |
TANG N, ZHANG H, LI X H, et al. Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice[J]. Plant Physiology, 2012, 158(4): 1 755-1 768.
|
| [26] |
WAN L Y, ZHANG J F, ZHANG H W, et al. Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice[J]. PLoS One, 2011, 6(9): e25216.
|
| [27] |
TANI T, SOBAJIMA H, OKADA K, et al. Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice[J]. Planta, 2008, 227(3): 517-526.
|
| [28] |
LENKA S, SINGH A, MUTHUSAMY S, et al. Heterologous expression of rice RNA-binding Glycine-rich (RBG) gene OsRBGD3 in transgenic Arabidopsis thaliana confers cold stress tolerance[J]. Functional Plant Biology, 2019, 46(5): 482-491.
|
| [29] |
ZENG D E, HOU P, XIAO F, et al. Overexpressing a novel RING-H2 finger protein gene, OsRHP1, enhances drought and salt tolerance in rice (Oryza sativa L.)[J]. Journal of Plant Biology, 2014, 57(6): 357-365.
|
| [30] |
SHEN H S, LIU C T, ZHANG Y, et al. OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice[J]. Plant Molecular Biology, 2012, 80(3): 241-253.
|